

CÁLCULO DE HUELLA DE CARBONO DE PRODUCTO

El cambio climático de origen antropogénico, se define como la alteración sobre las condiciones predominantes del clima ligada directa o indirectamente a la actividad humana. Esto no solo constituye un grave problema ambiental, también genera retos en el desarrollo, impactando la dimensión social y económica, por lo tanto, es considerado, uno de los desafíos más importantes que debe enfrentar la humanidad actualmente.

Toda actividad de producción y prestación de servicios, tiene un impacto directo sobre el clima al liberar gases de efecto invernadero (GEI). A nivel mundial crece la preocupación por las consecuencias que traen consigo el cambio climático. Lo que ha motivado a organizaciones e instituciones a realizar el cálculo de la huella de carbono. La medición es el primer paso en la gestión de las emisiones de carbono, reducir y compensar son los pasos siguientes.

La implementación del proceso de la medición y gestión de las emisiones de dióxido de carbono (CO2) producidas y liberadas en la atmosfera por la empresa Reuy, permite entender su participación en el cambio climático y establecer metas futuras para mitigarlas. También, hace posible garantizar un impacto ambiental positivo y cumplir con los objetivos de sostenibilidad de la empresa a largo plazo, así como identificar oportunidades para reducir costos.

Un informe de cálculo de la huella de carbono es un documento que reúne y describe las emisiones de estos gases en las actividades realizadas dentro de los límites e instalaciones de una organización. La estructura y contenido de los Reportes de medición de la Huella de carbono, pueden variar dependiendo del objetivo y la destinación del informe. Sin embargo, en general, deben incluir los siguientes elementos.

1. PRESENTACIÓN Y RESUMEN DEL ESTUDIO

La Huella de Carbono de Producto (HCP)

La huella de carbono define la cantidad de emisiones de Gases de Efecto Invernadero (GEI) asociadas al ciclo de vida de un producto, como consecuencia de la actividad de una empresa. Se expresa como cantidad de toneladas de CO2 equivalente.

La cuantificación de la huella de carbono es una herramienta adecuada para todas aquellas empresas que quieran adherirse a un sistema de compromiso voluntario de reducción de las emisiones de GEI, lo que contribuye a la demostración ante terceros del compromiso de la organización con la responsabilidad social a través de sus requisitos en mitigación del cambio climático.

Como beneficio adicional, la determinación de la huella de carbono permite identificar oportunidades de ahorro energético y económico, consecuencia de un mejor conocimiento de las fuentes emisoras y las posibilidades de reducción de emisiones.

1.1. INTRODUCCIÓN

El Análisis de Ciclo de Vida de Producto (ACVP) es una metodología de estudio que permite medir los aspectos ambientales e impactos potenciales asociados a un producto. En este método se analiza todo el ciclo de vida del producto que incluye la extracción de la materia prima y su adquisición, el consumo de energía y materiales durante la producción y la manufactura, la logística, almacenamiento y comercialización, el uso y el tratamiento de fin de vida.

Además de ser una herramienta para diagnosticar el impacto ambiental de un producto, también permite tomar decisiones para mejorar variables como el o los materiales con que se elabora, las características del proceso de manufactura, el tratamiento de fin de vida útil, entre otros.

El resultado del método es un conjunto de datos con respaldo científico y metodológico que pueden ser compartidos con otras áreas de una empresa (gerencia, marketing, operaciones, compras) para la mejora de sus decisiones, con clientes para explicar las características y beneficios del producto, y con otros interesados de la sociedad como organizaciones, gobiernos o público en general para sostener una declaración ambiental de un producto.

Específicamente, al elaborar un Inventario de Gases de Efecto Invernadero (GEI), procedemos a la medición y gestión de la huella de carbono. Además, se proporcionan recomendaciones futuras para continuar mejorando la medición y gestión de las emisiones de dióxido de carbono (CO2) producidas y liberadas en la atmosfera por la empresa REUY, con el fin de entender su participación en el cambio climático y establecer metas futuras para mitigarlas.

Se incluirán detalles sobre la metodología utilizada para la medición, los resultados obtenidos y las acciones sugeridas para obtener los Datos de Actividad de los Alcances 1 y 2. Así como las acciones necesarias para tener acceso a los Datos de Actividad que dependen de terceros, como en la extracción y transporte de las materias primas, los procesos productivos y de distribución de los productos y deposición final.

Esto debe ayudar a la empresa REUY a establecer políticas y programas para reducir las emisiones y alcanzar los objetivos de mitigación del cambio climático. También permite garantizar un impacto ambiental positivo y cumplir con los objetivos de sostenibilidad a largo plazo de la empresa, así como identificar oportunidades para reducir costos

1.2. OBJETIVOS

Los principales objetivos que se pretenden alcanzar con este estudio son los siguientes:

Calcular la Huella de carbono o emisiones de Gases de Efecto Invernadero (GEI) de la empresa REUY en la fabricación y distribución de sus productos Revaso y Revianda.

Demostrar el compromiso de la empresa REUY con la reversión del cambio climático, dando inicio al proceso de gestión de la huella de carbono: medición, mitigación, reducción y compensación.

1.3. DATOS DE IDENTIFICACIÓN

1.3.1. IDENTIFICACIÓN

Nombre de la Empresa	REUY SAS
RUT	218820090013

1.3.2. UBICACIÓN

Dirección	Millán 2794
Departamento	Montevideo
Código Postal	11800

1.3.4. PERSONAS DE CONTACTO

Nombre	Gabriel Berterretche Curti
Teléfono	092 017 451
Correo Electrónico	g.berterretche@gmail.com

1.3.5. IDENTIFICACIÓN DEL ESTUDIO

Fecha de recopilación de los datos	Mayo 2023 a Enero 2024
Año de referencia de los datos	2023
Fecha de entrega del Informe	15 de Marzo de 2024

1.3.6. IDENTIFICACIÓN DE LA EMPRESA EJECUTORA DEL ESTUDIO

Empresa ejecutora del reporte	Meta Sustentable
Equipo técnico	Cristian B. Curti

1.4. METODOLOGÍA DEL ESTUDIO

En la ejecución de los trabajos del cálculo de la huella de carbono se han desarrollado las siguientes fases:

1.4.1 SELECCIÓN DEL PRODUCTO

Esta fase se inició con la visita de las instalaciones de la organización.

A partir de una serie de criterios previamente definidos, se establece la medición para los dos productos fabricados y comercializados por la empresa, Revaso y Revianda, para el cálculo de la Huella de carbono.

1.4.2 ANÁLISIS Y ENTENDIMIENTO DEL CICLO PRODUCTIVO

A partir de los datos recogidos durante la visita de las instalaciones de la organización y otra información adicional suministrada por el cliente se elaboran los diagramas de flujo de los procesos de fabricación/realización y distribución del producto.

1.4.3 DEFINICIÓN DEL ALCANCE DE LA HUELLA DE CARBONO

A partir del análisis del ciclo productivo, se define el alcance del cálculo de la huella de carbono del producto. Esto conlleva la identificación de las emisiones asociadas a las distintas actividades clasificándolas como emisiones directas o indirectas y la determinación del alcance de contabilidad y reporte para las emisiones indirectas.

En la definición del alcance de la HCP (huella de carbono de producto) para el año 2023 fue establecido un criterio de corte basado en la disponibilidad de los datos de actividad requeridos. La HCP de REUY para 2023 es una HCP parcial, fundamentada en las etapas y procesos seleccionados dentro del ciclo de vida.

1.4.4. RECOPILACIÓN DE DATOS DIRECTOS E INDIRECTOS

Se recopilan dos tipos de datos: datos de actividad (materias primas, productos, energía consumida, transporte...) y factores de emisión (cantidad de GEI emitidos por unidad referida en la actividad; ejemplo: kg GEI/kWh).

1.4.5. CÁLCULO DE LAS EMISIONES

Las emisiones de GEI se calculan separadamente y se convierten a equivalentes de CO2 en base a su potencial de calentamiento global.

1.4.6. ANÁLISIS DE RESULTADOS E INFORME DE RESULTADOS

Los aspectos emisores obtenidos se analizan para determinar su importancia dentro del total del proceso. Con la información anteriormente analizada, se elabora un informe el cual será el resultado final del proyecto.

1.5. PRODUCTOS SELECCIONADOS PARA EL CÁLCULO

1.5.1 DESCRIPCIÓN DEL PRODUCTO REVASO

Materiales

El polipropileno (PP) es el polímero termoplástico, parcialmente cristalino, que se obtiene de la polimerización del propileno (o propano). Pertenece al grupo de las poliolefinas y es utilizado en una amplia variedad de aplicaciones que incluyen empaques para alimentos, tejidos, equipo de laboratorio, componentes automotrices y películas transparentes. Tiene gran resistencia contra diversos solventes químicos, así como contra álcalis y ácidos.

Datos del producto.

PRODUCTO	CAPACIDAD	PESO/UNIDAD	UNIDADES /CAJA	PESO TOTAL
REVASO	500 ml	43,8 g	250	10,950 k
REVASO	350 ml	35 g	350	12,250 k
TAPA		5,6 g	500	2,800 k

1.5.2 DESCRIPCIÓN DEL PRODUCTO REVIANDA

El material es el mismo.

Datos del producto.

PRODUCTO	CAPACIDAD	PESO/UNIDAD	UNIDADES/CAJA	PESO TOTAL
REVIANDA	1400 ml	118 g	75	8,850 k

1.6. SELECCIÓN DE LA METODOLOGÍA DE CUANTIFICACIÓN

La norma ISO14067:2018 Edición 2019-12 Gases de efecto invernadero — Huella de Carbono de productos — Requisitos y directrices para cuantificación, es la norma específica que define los principios, requisitos y directrices para la cuantificación de la Huella de Carbono de productos.

El objetivo de este documento es cuantificar las emisiones de GEI asociadas con las etapas del ciclo de vida de un producto, comenzando con la extracción de recursos y el abastecimiento de materia prima y extendiéndose a través de las etapas de producción, uso y finalización de la vida del producto.

Este documento especifica los principios, requisitos y directrices para la cuantificación y el informe de la Huella de Carbono de un producto (HCP), de manera coherente con las Normas Internacionales de evaluación del ciclo de vida (ACV) (ISO 14040 e ISO 14044). También se especifican los requisitos y directrices para la cuantificación de una HCP parcial.

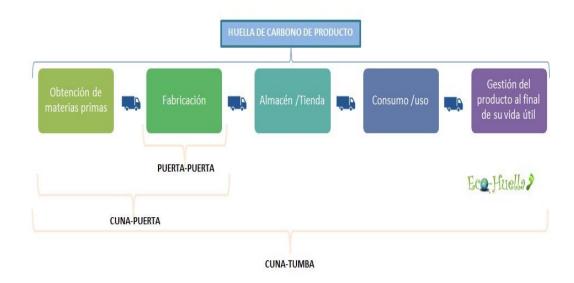
La norma ISO14067:2018, define algunos conceptos:

Enfoque sistemático de huella de carbono de un producto (HCP)

Este enfoque se define como el conjunto de procedimientos para facilitar la cuantificación de la HCP para dos o más productos de la misma organización.

Estudio huella de carbono de un producto (HCP)

Todas las actividades que son necesarias para cuantificar e informar una huella de carbono de un producto HCP o una HCP parcial.


Informe de estudio de la huella de carbono de un producto (HCP)

Informe que documenta el estudio de la HCP, presenta la HCP o la HCP parcial, y muestra las decisiones tomadas en el estudio.

Cuantificación de la huella de carbono de un producto (HCP)

Actividades que resultan en la determinación de una HCP o una HCP parcial.

2. ANÁLISIS DEL CICLO DE VIDA DE PRODUCTO

La HCP suma las emisiones totales de gases de efecto invernadero generadas por un producto en las diferentes etapas de su ciclo de vida. Por ejemplo, una HCP (parcial) de la cuna a la puerta considera todos los procesos desde la extracción de recursos hasta la fabricación de materia prima y la elaboración del producto final hasta el punto en que sale de la empresa. De la puerta a la puerta, considera exclusivamente el proceso de fabricación del producto, desde la llegada de la materia prima hasta la salida del producto pronto. Una HCP de la cuna a la tumba cubre el ciclo de vida completo del producto, incluidas las emisiones desde la extracción de los recursos, la materia prima, fabricación, la fase de uso y el final de su vida útil. Contemplando también, los transportes involucrados a lo largo de todo el proceso.

2.1 ANÁLISIS DEL CICLO DE VIDA

Ciclo de vida

Son las etapas consecutivas e interrelacionadas concernientes con un producto, desde la adquisición de materia prima o de su generación o extracción a partir de recursos naturales hasta el tratamiento al final de la vida útil.

Análisis del ciclo de vida ACV

Recopilación y evaluación de las entradas, las salidas y los impactos ambientales potenciales de un sistema producto a través de su ciclo de vida. Nuestro estudio se refiere exclusivamente al impacto en la emisión Gases de Efecto Invernadero para la medición de la huella de carbono.

Criterios de corte

Especificación de la cantidad de flujo de materia o de energía o el nivel de significancia de las emisiones de GEI asociadas a los procesos unitarios o al sistema producto para su exclusión del estudio de la HCP.

Los criterios de corte están fundamentados para este reporte, en que únicamente se contó con la información necesaria para el cálculo de la HCP (parcial), de estas tres etapas: inyección, impresión y distribución. La empresa establece el objetivo de ampliar el reporte para incluir

gradualmente todas las etapas, procesos y flujos que sean atribuibles al sistema producto analizado.

Diagrama de procesos, destacando las Etapas, 4, 5 y 6 contempladas en esta medición

ETAPAS	ACTIVIDAD	PROCESO
1	MOLDES	
	PRODUCCIÓN DE LOS MOLDES, ENERGIA, PRODUCTOS UTILIZADOS, DESCARTE	PRODUCCIÓN
	TRANSPORTE HASTA PUERTO O AEROPUERTO DE ENVIO	TRANSPORTE
	TRASNPOORTE DE LOS MOLDES HASTA EL PUERTO O AEROPUERTO DE MONTEVIDEO	TRANSPORTE
	TRANSPORTE DEL MOLDE HASTA LOCAL DE LA MAQUINA INJECTORA	TRANSPORTE
2	EXTRACCIÓN	
	EXTRACCIÓN DE LAS MATERIAS PRIMAS - PETROLEO GAS	PRODUCCIÓN
	TRANSPORTE HASTA LOCAL DE PRODUCCIÓN	TRANSPORTE
3	PETROQUIMICA	
	PRODUCCIÓN DEL POLIMERO ENERGIA, PRODUCTOS UTILIZADOS, DESCARTE	PRODUCCIÓN
	TRANSPORTE DEL POLIMERO HASTA PUERTO O AEROPUERTO DE EXPORTACIÓN	TRANSPORTE
	TRANSPORTE DEL POLIMERO HASTA PUERTO O AEROPUERTO DE MONTEVIDEO	TRANSPORTE
	TRANSPORTE DEL POLÍMERO HASTA LOCAL DE INYECCIÓN	TRANSPORTE
4	INYECCIÓN	
	PROCESO DE INYECCIÓN, ENERGIA, PRODUCTOS UTILIZADOS, DESCARTE	PRODUCCIÓN
	TRANSPORTE DEL PRODUCTO INYECTADO	TRANSPORTE
	ALMACENAMIENTO DEL PRODUCTO INYECTADO	ALMACENAMIENTO
	TRANSPORTE DEL PRODUCTO HASTA LOCAL DE IMPRESIÓN	TRANSPORTE
5	IMPRESIÓN	
	PROCESO DE IMPRESIÓN ENERGIA, PRODUCTOS UTILIZADOS, DESCARTE	PRODUCCIÓN
	SECADO	PROCESO
	ALMACENAMIENTO DEL PRODUCTO IMPRESO	ALMACENAMIENTO
6	DISTRIBUCIÓN	
	DISTRIBUCIÓN DEL PRODUCTO PRONTO	TRANSPORTE
7	REUTILIZACIÓN Y RECICLADO	
	PRODUCTOS PARA RECICLADO	TRANSPORTE
	PRODUCTOS PARA RECUPERACIÓN	TRANSPORTE
	RECUPERACIÓN	PROCESO
	RECICLADO	PROCESO
8	LAVADO PARA REUSO	
	RECOLECCIÓN PRODUCTO PRONTO PARA REUSO	TRANSPORTE
	LAVADO SECADO, ENERGIA, PRODUCTOS UTILIZADOS	PROCESO
	ALMACENAMIENTO DEL PRODUCTO LAVADO	ALMACENAMIENTO
9	DESCARTE Y ELIMINACIÓN	
	PRODUCTOS DESCARTADOS	TRANSPORTE
	ELIMINACIÒN DE LOS RESIDUOS VERTEDEROS	PROCESO

2.1.1 INYECCIÓN

Conocida como una técnica de moldeo en el cual el polímero, o resina, se funde en un estado líquido, se inyecta a alta presión en un molde cerrado hasta llenarlo completamente, y

posteriormente, se enfría dentro del molde y se solidifica, para tener como resultado una pieza moldeada.

El polímero es adquirido directamente por la empresa que realiza la inyección. Para la medición de la HCP, fue considerado el consumo de energía necesario para la fabricación de los productos analizados, el Revaso, en sus dos versiones 500 ml y 350 ml, incluyendo las tapas y la Revianda.

2.1.2 IMPRESIÓN

La empresa cuenta con dos tipos de proveedores para el servicio de impresión de serigrafía de sus productos. El primero se realiza directamente en la empresa encargada de la inyección del polipropileno. En el segundo caso, se trabaja con empresas independientes a las cuales se les entrega los productos para impresión.

En las actividades relacionadas con las impresiones de serigrafía, para la cuantificación de las emisiones para la medición de la HCP parcial, fue considerado el consumo de energía eléctrica en los procesos de estampado y secado, de cada uno de los productos.

2.1.3 DISTRIBUCIÓN

El proceso de distribución y entrega de los productos prontos, es realizado por un vehículo propio de la empresa. Fue considerado el consumo de combustible necesario para esta actividad para efectos de la medición de la HCP parcial.

3. ALCANCE DE LA HUELLA DE CARBONO

HUELLA DE CARBONO DE PRODUCTO HCP

Suma de las emisiones de gases de efecto invernadero (GEI) y remociones de GEI en un sistema producto, expresadas como CO₂ equivalente y basadas en una evaluación del ciclo de vida utilizando la categoría de impacto única de cambio climático

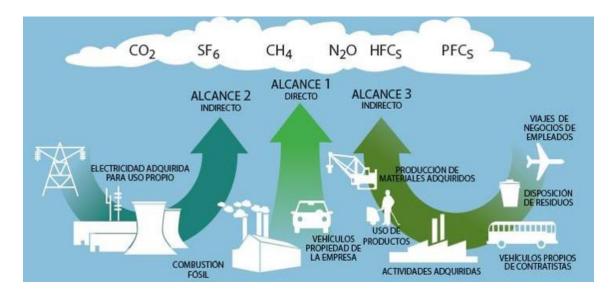
HUELLA DE CARBONO DE UN PRODUCTO PARCIAL HCP PARCIAL

Es la suma de emisiones de gases de efecto invernadero (GEI) y remociones de GEI de uno o más procesos seleccionados de un sistema producto, expresadas como equivalentes de CO₂ y basadas en las etapas o procesos seleccionados dentro del ciclo de vida.

Para esta primera medición de la HCP de los productos de REUY fueron seleccionadas tres etapas específicas del CVP, las etapas 4, 5 y 6, correspondientes a la inyección de los productos, la impresión y la distribución de los productos prontos.

Huella de carbono por producto

3.1. LÍMITES DE LA ORGANIZACIÓN


REUY S.A

Las operaciones de las empresas varían tanto en su estructura legal como en su estructura organizacional; incluyen operaciones que son de su propiedad, alianzas incorporadas y no incorporadas, subsidiarias y otras modalidades. Al fijarse los límites organizacionales, una empresa selecciona un enfoque para consolidar sus emisiones de GEI; este enfoque debe ser aplicado consistentemente para definir aquellas unidades de negocio y operaciones que constituyen a la empresa para fines de contabilidad y reporte de GEI.

3.2. ESTABLECIMIENTO DE LOS LÍMITES OPERATIVOS

Después de haber determinado sus límites organizacionales en términos de las actividades de las que es propietaria o tiene el control, una empresa establece sus límites operacionales. Esto involucra identificar emisiones asociadas a sus operaciones clasificándolas como emisiones directas o indirectas, y seleccionar el alcance de contabilidad y reporte para las emisiones indirectas.

Administrar los GEI de manera efectiva y establecer límites operacionales comprensivos respecto de las emisiones directas e indirectas ayudará a una empresa a manejar mejor el espectro total de los riesgos y las oportunidades a lo largo de su cadena de valor.

3.3. IDENTIFICACIÓN DE LAS FUENTES EMISORAS DE GEI

- Combustión móvil
- Energía eléctrica

3.4. CLASIFICACIÓN DE FUENTES EMISORAS DE GEI

3.4.1. EMISIONES DIRECTAS DE GEI (ALCANCE 1)

COMBUSTIÓN MÓVIL VEHÍCULO DE LA EMPRESA	ALCANCE 1

3.4.2. EMISIONES INDIRECTAS DE GEI DEBIDAS A ENERGÍA (ALCANCE 2)

ENERGIA	ALCANCE 2	
2.12.10.11	,o,	

3.4.3. OTRAS EMISIONES INDIRECTAS DE GEI (ALCANCE 3)

ENERGIA - INYECCIÓN	ALCANCE 3
ENERGIA - IMPRESIÓN	ALCANCE 3
COMBUSTIÓN MÓVIL - TRANSPORTE DE COLABORADORES	ALCANCE 3
COMBUSTIÓN MÓVIL - VEHICULOS DE LOS SOCIOS	ALCANCE 3

Alcance 1, 2 y 3

3.5 LÍMITES DEL SISTEMA

3.5.1 LÍMITE DEL SISTEMA

Límite basado en un conjunto de criterios que especifican cuales de los *procesos unitarios* son parte del sistema en estudio. Como fue definido anteriormente, en esta HCP (parcial) los límites de del sistema para análisis y medición de emisiones estuvo determinado a tres procesos.

3.5.2 PROCESOS

Conjunto de actividades mutuamente relacionadas o que interactúan, que transforma las entradas en productos. Los procesos determinados para la HCP (parcial) fueron: Inyección, Impresión y distribución.

3.5.3 UNIDAD DECLARADA

Es la cantidad de un producto para su uso como unidad de referencia en la cuantificación de una HCP parcial. Para los productos seleccionados para esta medición de la definimos la cantidad de 1.000 (mil) piezas de cada uno de los productos, como unidad declarada para la cuantificación de emisiones.

4. RECOPILACIÓN DE DATOS

4.1. DATOS DE ACTIVIDAD Y FACTORES DE EMISIÓN

4.1.1 DATOS DE ACTIVIDAD

Los parámetros (datos de actividad y factores de emisión) empleados en la metodología para el cálculo de la huella de carbono proceden de diferentes fuentes:

- Datos proporcionados por los propietarios y colaboradores de la empresa REUY.
- Datos de carácter general provenientes de metodologías reconocidas (Normas ISO, IPCC y GHG Protocol).
- Datos suministrados por los proveedores de materias primas o servicios.
- Datos de estudios específicos realizados en el sector del plástico.
- Datos de otros organismos nacionales como Ministerio de Ambiente (MA) y Ministerio de Industria, Minas y Energía (MIEM).

4.1.2 FACTORES DE EMISIÓN

La lista de Factores de Emisión y sus Fuentes de referencia están en el documento Excel anexo, junto con la recopilación de los Datos de Actividad y la memoria de cálculo.

5. CÁLCULO DE EMISIONES DE GEI

MODELO DE CÁLCULO DE EMISIONES DE GEI

La contabilización de las emisiones de GEI que se presenta en este informe se basa en la metodología del Panel Intergubernamental sobre el Cambio Climático (IPCC) 2006 - Guidelines for National Greenhouse Gas Inventories (GNGGI), que cuantifica las emisiones de GEI en función de los datos relacionados con las actividades inventariadas y factores de emisión.

Las emisiones de GEI suelen estar representadas por la cantidad de dióxido de carbono equivalente (CO2e) emitido. El cálculo de las emisiones de CO2e se realiza a través de la sumatoria ponderada de los GEI, por sus respectivos Potenciales de Calentamiento Global (PCG), según la Ecuación 1.

CÁLCULO DE EMISIONES DE GEI

$E = \sum GEEi * PAGi$	ECUACIÓN 1

SIMBOLO	SIGNIFICADO	UNIDAD
Ε	Emisiones de GEI	tCO2e
GEEi	Masa de gas emitido	t de gas
PAGi	Potencial de Calentamiento Global	Unidad Adimensional
i	GEI Inventariado	tCO2e / t de gas

De acuerdo con la decisión 24/CP.19 de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC), a partir de 2016 los inventarios deben reportarse en base al potencial de calentamiento global (GWP) presentado por el IPCC en su 5to Informe (Fifth Assessment Report - AR5).

Tabla – Potencial de Calentamiento Global (GWP) de los principales GEI regulados por Kioto.

Cuadro

Potencial de calentamiento global

Co.	Descistancia en eños	Potencia de cale:	ntamiento global	Reporte de referencia
Gas	Persistencia en años	20 años	100 años	
Dióxido de carbono (CO ₅)	NA	1	1	IPCC 2013 -AR5
Dioxido de Carbollo (CO ₂)	NA	1	1	IPCC 1996 -SAR
Motono //U \	12.4	84	28	IPCC 2013 -AR5
Metano (CH₄)	12	56	21	IPCC 1996 -SAR
Óxido nitroso (N ₂ O)	121	264	265	IPCC 2013 -AR5
	120	280	310	IPCC 1996 -SAR

Fuente: elaborado a partir de los datos contenidos en: https://ghginstitute.org/2010/06/28/what-is-a-global-warming-potential/

NA = no aplica.

AR5 = Asessment Report 5.

SAR = Second Assessment Report.

5.1. CÁLCULOS REALIZADOS

5.1.1. COMBUSTIÓN FUENTES MÓVILES

Las emisiones de GEI de fuentes móviles, como carretera, aire, ferrocarril, vía fluvial y vehículos todo terreno (vehículo todo terreno como carretillas elevadoras, tractores, etc.), se calculan en el Inventario de GEI de dos formas diferentes: por consumo de combustible o por la persona/carga transportada.

Para los casos en que se disponga del consumo de combustibles o exista información suficiente para estimar este consumo, las emisiones de GEI se cuantifican siguiendo la misma metodología de cálculo presentada en la (Ecuación 2), considerando los factores de emisión apropiados para este tipo de fuentes.

EMISIONES DE FUENTES MÓVILES

Ei, x = Consx * FEi, x	ECUACIÓN 2
------------------------	------------

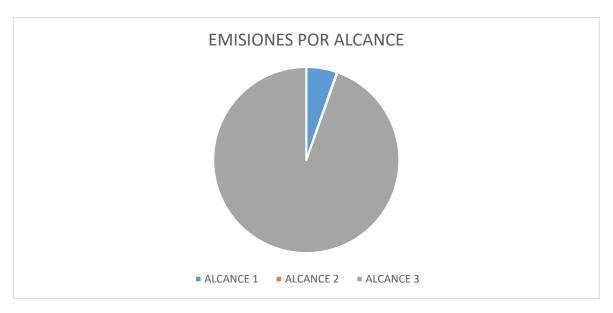
SIMBOLO	SIGNIFICADO	UNIDAD
Ei,x	Emisiones de GEI i por el uso de combustible x	kg de gas
Consx	Consumo de combustible x	L de combustible
FEi,x	Factor de Emisión del combustible x	kg de gas / L de combustible
i	GEI inventariado (CO2)	
Х	Tipo de combustible	

5.1.2. ELECTRICIDAD

Las emisiones de energía eléctrica comprada se cuantifican según ecuación3. Los Factores de Emisión de la red eléctrica de nuestro país son divulgados por el Ministerio de Industria, Energía y mines en el BEN (Balance Energético Nacional). Los mismos suelen tener una variación dependiendo de las fuentes de generación en operación.

ENERGÍA ELÉCTRICA COMPRADA

$Ei, eletr = \sum (Ef * FEi, f)$	ECUACIÓN 3
----------------------------------	------------


SIMBOLO	SIGNIFICADO	UNIDAD
$\it E$ i, eletr	Emisiones de GEI de la electricidad comprada	t de gas
Ef	Electricidad comprada de la fuente f	MWh
FEi	Factor de emisión de GEI tipo i de la fuente de gas f	t de gas / MWh
i	GEI inventariado (CO2)	
f	Fuente de energía eléctrica	

6. ANÁLISIS DE RESULTADOS

6.1. DISTRIBUCIÓN DE EMISIONES DE GEI

EMISIONES POR ALCANCE

EMISIONES POR ALCANCE	tCO2e	PORCENTAJE
ALCANCE 1	1,984	5,35
ALCANCE 2	0,034	0,10
ALCANCE 3	35,095	94,56
TOTAL EMISIONES	37,113	100

ALCANCE 1

COMBUSTIÓN FIJA O ESTACIONARIA	tCO2e
	0,000

COMBUSTIÓN MÓVIL LOGÍSTICA	tCO2e
	1,984

GASES FUGITIVOS EXTINTORES	tCO2e
	0,000

GASES FUGITIVOS AIRE ACONDICIONADO	tCO2e
	0,000

TOTAL ALCANCE 1	tCO2e
	1,984

Para el Alcance 1, en 2023 tenemos únicamente emisiones para una de las Categorías, la Combustión Móvil, relativa a la camioneta encargada de la logística de los productos. Son registradas todas las Categorías para efectos comparativos a lo largo del tiempo.

ALCANCE 2

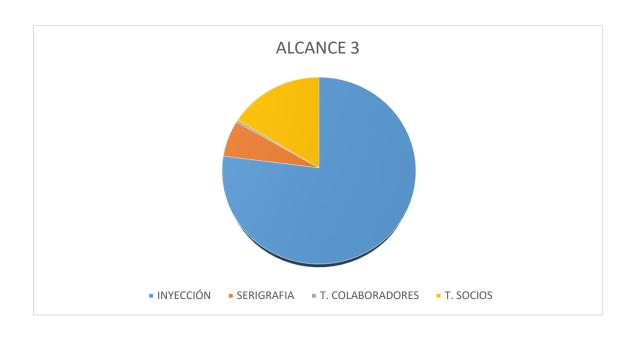
ENERGÍA ELÉCTRICA	tCO2e
	0,034

TOTAL ALCANCE 2	tCO2e
	0,034

Las emisiones por consumo de Energía de la empresa son particularmente bajas debido a que el consumo considerado en la sede de la empresa abarca el periodo de agosto a diciembre de 2023. Además el Factor de Emisión establecido por el MIEM para la red pública en 2022 fue 40% más bajo que para el año anterior.

ALCANCE 3

INYECCIÓN	tCO2e
	27,024


SERIGRAFÍA	tCO2e
	2,212

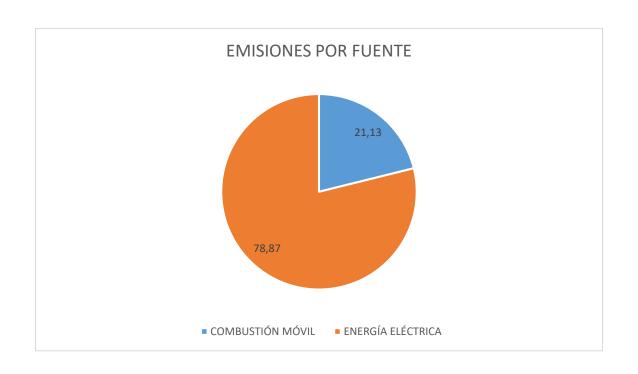
TRASNPORTE DE COLABORADORES	tCO2e
	0,136

TRANSPORTE DE SOCIOS	tCO2e
	5,724

TOTAL ALCANCE 3	tCO2e
	35,095

TOTAL ALCANCE 3	tCO2e	PORCENTAJE
INYECCIÓN	27,024	77,00
SERIGRAFÍA	2,212	6,30
TRANSPORTE DE COLABORADORES	0,136	0,39
TRANSPORTE DE SOCIOS	5,724	16,31
TOTAL	35,095	100

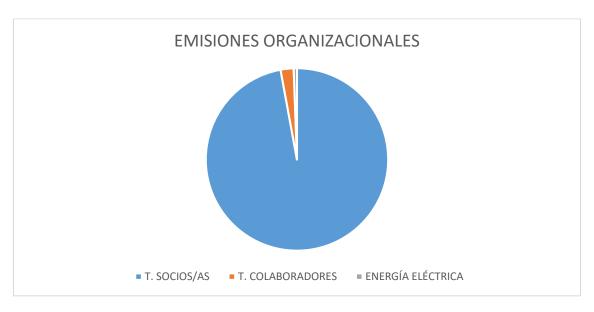
6.2. FUENTES RELEVANTES DE EMISIONES


COMBUSTIÓN MÓVIL

COMBUSTIÓN MÓVIL	tCO2e
	7,844

ENERGÍA ELÉCTRICA

ENERGÍA	tCO2e
	29,269


EMISIONES POR FUENTE	tCO2e	PORCENTAJE
COMBUSTIÓN MÓVIL	7,844	21,13
ENERGÍA ELÉCTRICA	29,269	78,87
TOTAL EMISIONES	37,113	100

6.3 EMISIONES ORGANIZACIONALES

Aquí reunimos las emisiones que no están directamente relacionadas con los procesos de fabricación y distribución de los productos. La energía eléctrica en la sede administrativa y el transporte de socios/as y colaboradores/as.

EMISIONES ORGANIZACIONALES	tCO2e	PORCENTAJE
ENERGÍA ELÉCTRICA	0,034	0,58
TRANSPORTE DE COLABORADORES	0,136	2,31
TRANSPORTE DE SOCIOS	5,724	97,11
TOTAL EMISIONES	5,894	100

6.4 EMISIONES POR PRODUCTO

6.4.1 PROCESO DE INYECCIÓN

REVASO 500 ml	tCO2e
	18,403

REVASO 350 ml	tCO2e
	7,769

TAPAS	tCO2e
	0,117

REVIANDAS	tCO2e
	0,735

EMISIONES POR PRODUCTO	tCO2e	PORCENTAJE
REVASO 500 ml	18,403	68,10
REVASO 350 ml	7,769	28,75
TAPAS	0,117	0,43
REVIANDAS	0,735	2,72
TOTAL EMISIONES	27,024	100

6.4.2 PROCESO DE IMPRESIÓN

REVASO 500 ml	tCO2e
	1,505

REVASO 350 ml	tCO2e
	0,706

EMISIONES POR PRODUCTO	tCO2e	PORCENTAJE
REVASO 500 ml	1,505	68,06
REVASO 350 ml	0,706	31,94
TOTAL EMISIONES	2,212	100

6.4.3 PROCESO DE LOGÍSTICA

Para el cálculo de las emisiones por producto en el proceso de logística, fueron considerados las cantidades y los pesos de los productos, estableciendo la proporción correspondiente a cada tipo de producto.

REVASO 500 ml	tCO2e
	1,397

REVASO 350 ml	tCO2e
	0,524

TAPAS	tCO2e
	0,003

REVIANDAS	tCO2e
	0,060

LOGÍSTICA: EMISIONES POR PRODUCTO	tCO2e	PORCENTAJE
REVASO 500 ml	1,397	70,41
REVASO 350 ml	0,524	26,41
TAPAS	0,003	0,15
REVIANDAS	0,060	3,02
TOTAL EMISIONES	1,984	100

6.4.4 EMISIONES CONJUNTAS DE FABRICACIÓN Y DISTRIBUCIÓN

EMISIONES FABRICACIÓN Y DISTRIBUCIÓN	tCO2e	PORCENTAJE
REVASO 500 ml	21,305	68,24
REVASO 350 ml	8,999	28,83
TAPAS	0,120	0,38
REVIANDAS	0,795	2,55
TOTAL EMISIONES	31,219	100

Fueron reunidas en este cálculo las emisiones conjuntas de los procesos de fabricación (inyección e impresión) y de la distribución y logística de los productos.

6.4.5 EMISIONES ORGANIZACIONALES POR PRODUCTO

Esta misma proporción, fue trasladada para el cálculo de las emisiones que corresponden para cada producto dentro de las Emisiones Organizacionales.

EMISIONES ORGANIZACIONALES	tCO2e	PORCENTAJE
REVASO 500 ml	4,022	68,24
REVASO 350 ml	1,699	28,83
TAPAS	0,023	0,38
REVIANDAS	0,150	2,55
TOTAL EMISIONES	5,894	100

6.4.6 TOTAL DE EMISIONES POR PRODUCTO

Finalmente la suma de las emisiones resultantes de la fabricación (inyección e impresión), más las emisiones de la logística y distribución junto a las emisiones organizacionales, nos proyecta el cálculo general de emisiones totales, por producto.

TOTAL DE EMISIONES POR PRODUCTO	tCO2e	PORCENTAJE
REVASO 500 ml	25,327	68,24
REVASO 350 ml	10,698	28,83
TAPAS	0,143	0,38
REVIANDAS	0,945	2,55
TOTAL EMISIONES	37,113	100

7. CALCULO DE EMISIONES POR UNIDADES

7.1. CÁLCULO DE EMISIONES POR UNIDAD DE PRODUCTO EN GRAMOS

PRODUCTO	CANTIDAD	EMISIONES POR UNIDAD DE PRODUCTO	EMISIONES TOTALES
	PRODUCIDA	EN gCO2e	EN tCO2e
REVASO 500 ml	625.756	40	25,327
REVASO 350 ml	293.599	36	10,698
TAPAS	11.649	12	0,143
REVIANDAS	10.000	94	0,945
TOTAL	941.004	-	37,113

7.2. CÁLCULO DE EMISIONES POR UNIDAD DECLARADA

PRODUCTO	CANTIDAD	EMISIONES POR UNIDAD DECLARADA	EMISIONES TOTALES
	PRODUCIDA	EN tCO2e	EN tCO2e
REVASO 500 ml	625.756	0,040	25,327
REVASO 350 ml	293.599	0,036	10,698
TAPAS	11.649	0,012	0,143
REVIANDAS	10.000	0,094	0,945
TOTAL	941.004	-	37,113

Como mencionamos en el ítem 3.5.3 definimos utilizar la cantidad del millar de cada uno de los productos como Unidad Declarada para su uso como unidad de referencia en la cuantificación de la Huella de carbono Parcial de los productos de la empresa REUY. Así, cada 1.000 unidades de producto son igual a una Unidad Declarada.

8. PROPUESTAS DE MEJORA

8.1 MITIGACIÓN Y REDUCCIÓN

La reducción de la huella de carbono de un producto plástico está relacionada con una reducción de costes ambientales y de recursos y va asociada entre otros aspectos a:

- Reducción de materias primas,
- Mejora en la eficiencia energética,
- Optimización del transporte,
- Uso de biopolímeros,
- Uso de materiales reciclados.

Otros aspectos son: cambios en el proceso de producción, uso de envases reciclables, reducción de materiales peligrosos o reducción de residuos.

¿Cómo reducir la huella de carbono?

La huella de carbono de un producto mide la totalidad de gases de efecto invernadero (GEI) emitidos durante todo el ciclo de vida del producto, desde la extracción y procesado de materias primas, pasando por la fabricación y distribución, hasta las etapas de uso y final de la vida útil.

Así pues, el cálculo de la huella de carbono permite a las empresas cuantificar las emisiones de GEI derivadas de todo el ciclo de vida de sus productos, determinando la contribución de cada proceso y etapa del ciclo de vida a las emisiones totales. Una vez identificados los puntos críticos de los productos es posible aplicar estrategias de ecodiseño para reducir su huella de carbono.

El ecodiseño es un proceso integrado en el diseño y desarrollo de producto que tiene como objetivo reducir el impacto ambiental de los productos a lo largo de todo su ciclo de vida. El ecodiseño no modifica el proceso básico de diseño y desarrollo de nuevos productos, sino que lo complementa mediante la inclusión de criterios ambientales que deben recibir la misma atención que el resto de aspectos tradicionales de diseño, como la calidad, la seguridad o la estética.

La consideración de los criterios ambientales en la etapa de diseño responde al hecho de que la mayor parte de los impactos ambientales de un producto (aproximadamente el 80%, según la Agencia Federal Alemana del Medio Ambiente) quedan prefijados en el momento en que se diseña. Una vez que el producto ya está fabricado y empieza a comercializarse, hay poco margen de actuación para reducir sus impactos ambientales.

8.2 COMPENSACIÓN

Las compensaciones de emisiones de GEI pueden realizarse de varias formas:

- Captura y almacenamiento de CO2: Esta tecnología consiste en capturar el CO2 presente en la atmósfera o producidos en procesos industriales y almacenarlas de manera segura en largo plazo. El CO2 capturado puede ser usado en la industria química o materiales de construcción, o puede almacenarse en sub suelo.
- Plantación de árboles a cargo de la organización: La reforestación y la plantación de árboles son formas efectivas de compensar la huella de CO2. Los árboles absorben CO2 a medida que

crecen ayudando a reducir los niveles de Carbono en la atmósfera. Las empresas pueden participar en programas de reforestación o establecer proyectos de plantación de árboles como parte de sus estrategias de compensación

- Inversión en energías renovables y proyectos de eficiencia energética: Consiste en invertir en el desarrollo de planes de eficiencia energética que reducen el consumo de energía y por ende las emisiones de CO2 según el tipo de energía que se reduzca.
- Compra de créditos de carbono: Las empresas pueden comprar créditos de carbono, también conocidos como certificados de reducción de emisiones (CER, por sus siglas en inglés), a través de programas de compensación reconocidos. Estos créditos representan la reducción de una tonelada de CO2 en un proyecto certificado

Al ser un asunto global, es razonable pensar en soluciones de compensación globales. En este sentido, los proyectos de forestación o la compra de créditos de carbono pueden ser en mercados foráneos. Sin embargo, las buenas prácticas marcan que lo mejor es compensar emisiones a través de proyectos dentro del territorio nacional y a su vez proyectos que sean materiales a la organización.

Propuesta de Compensación

Plantación de árboles nativos:

Se atribuye a los árboles nativos en promedio una capacidad de almacenamiento de 100 a 200 kg de CO2 en promedio durante su ciclo de vida. Por lo cual, podemos estimar la plantación de 5 a 10 árboles para cada tonelada de Dióxido de Carbono emitida.

Recomendación:

- Luego de implementar las medidas de mitigación que podrán suponer una reducción del nivel de emisiones, evaluar la viabilidad de desarrollar campañas de plantaciones con Especies nativas.

8.3 RIESGOS Y OPORTUNIDADES

El cálculo de la huella de carbono de una empresa le da la oportunidad de:

- Ser reconocida como una organización líder confiable y sólida en materia climática.
- Emprender acciones climáticas para generar un cambio genuino, cuantificable y visible para sus partes interesadas.
- Dar a conocer su historial de sostenibilidad.
- Comprender en detalle su cadena de suministro.
- Aprovechar la sostenibilidad para reducir costos y maximizar la eficiencia.

En cuanto a los riesgos, debemos considerar que debido al agravamiento creciente de la emergencia climática, es previsible suponer que serán creados marcos regulatorios y medidas más exigentes para las actividades industriales que dependen de combustibles fósiles.